
1
American Institute of Aeronautics and Astronautics

AIAA-2000-4390

MANAGING THE PLAYBACK AND RECORDING OF
SIMULATION MODELS IN AN OBJECT-ORIENTED

SIMULATION

P. Sean Kenney*

Systems Development Branch
NASA Langley Research Center

Mail Stop 125B
Hampton VA 23681

Paul C. Sugden†

Unisys Corporation

NASA Langley Research Center
Mail Stop 169

Hampton, VA 23681

Abstract*†

Flight simulation often uses playback as a means to
replay the movement of vehicles in a simulation envi-
ronment. Playback vehicles must be absolutely repeat-
able and computationally efficient. This paper presents
an object-oriented design for playing back vehicle be-
havior using a direct vehicle-state playback, control-
surface playback, or pilot input playback. The design
was added to the Langley Standard Simulation in C++
(LaSRS++) where it supports a number of current ex-
periments. The design provides an accurate means to

* Aerospace Engineer, Member AIAA.
† Software Engineer
Copyright  2000 by the American Institute of Aero-
nautics and Astronautics, Inc. No copyright is asserted
in the United States under Title 17, U.S. Code. The
U.S. Government has a royalty-free license to exercise
all rights under the copyright claimed herein for Gov-
ernmental purposes. All other rights are reserved by
the copyright owner.

replay the dynamic behavior of a vehicle while mini-
mizing computational load. The design has proven to
be flexible, maintainable, and extendible.

Introduction

Among the many things required to provide a repeat-
able flight environment, one of the more complex
items is the presentation of other vehicles to a pilot. In
military aircraft simulations a pilot may have to ac-
quire and destroy drones, maneuvering aircraft, fixed-
based ground targets, or moving ground targets. In
commercial aircraft simulations a pilot may have to
deal with air and ground traffic while flying or taxiing
in an airport’s vicinity. Qualitative research data can
only be obtained if the vehicles in these scenarios
move with absolute repeatability.

Another complex requirement is to provide the means
to replay the flight profile of a vehicle. Flight data
from an aircraft that has crashed can be analyzed by re-
creating the flight. Simulation models can also be veri-
fied against test flight data. Analysis is difficult with-
out a simple, repeatable method of injecting data into a
simulation model.

2
American Institute of Aeronautics and Astronautics

The Langley Standard Real-Time Simulation in C++
(LaSRS++) provides this repeatability using three dif-
ferent methods: state playback, control-surface play-
back, and pilot playback1. State playback records the
states of a vehicle and uses the data to “playback” the
vehicle’s movement without performing any integra-
tion. Control-surface playback records the control sur-
face commands or deflections and uses the data to rec-
reate the dynamic movement of a vehicle by driving
control surfaces with the commands or deflections and
integrating the state of the vehicle. Pilot playback rec-
ords the inputs made by a pilot and uses the data to
playback the flight by injecting the recorded pilot
commands into the fully operational simulation. Each
of the three methods is applicable to different kinds of
simulation research.

State playback is applicable whenever pilot interaction
with another vehicle is only dependent upon that vehi-
cle’s position, velocity, and orientation. For example, a
fighter pilot might be tasked to target and destroy an-
other aircraft. To accomplish the task, the pilot must
be able to see the CGI representation of the target,
track the target with radar, and use a gun sight to de-
stroy the target aircraft. The CGI model, radar model,
and gun model only need the target’s states to compute
the its position, velocity and orientation relative to the
pilot. Derived states for an aircraft like angle of attack,
Mach number, and sideslip are not needed. Thus, state
playback computational load is light when compared
to a complete six degree of freedom simulation model.
This allows multiple state-playback models to be used
within the time constraints of a real-time simulation
frame.

Control-surface playback supports analysis of the
simulation that requires removal of control law influ-
ences. For example, surface commands or surface de-
flections can be obtained from flight test data to recre-
ate the flight profile of the test vehicle. The perform-
ance of the simulation model can then be validated
against the flight profile of the test vehicle. Control-
surface playback isolates the performance of a model
from its control system, thereby allowing a developer
to measure the performance of modifications to the
aerodynamic package. Moreover, the developer can

test the aerodynamics package before the control law
has been completed.

Pilot playback is used to analyze the response of a
human to his/her environment or the response of a
simulation model to a series of human inputs. For ex-
ample, if a pilot is tasked to perform emergency ma-
neuvers as part of a training exercise, the pilot’s inputs
can be replayed while the instructor discusses the pi-
lot’s performance. State-playback would not provide
all of the derived information necessary to completely
re-create the test sequence as viewed by the pilot. An-
other application of pilot-playback is to analyze any
unexpected behavior produced by a simulation model.
If a pilot encounters an unexpected event while flying,
the recorded inputs can be used offline to repeat the
scenario so that the problem may be analyzed without
requiring all of the resources necessary to perform
pilot-in-the-loop, synchronous real-time simulations.
Pilot playback also provides an ideal means to gener-
ate a demonstration of a simulation facility without a
pilot in the loop thus allowing visitors an unobstructed
view of the facilities.

Design Requirements

An object-oriented design was created to allow the
playback and recording of dynamic vehicle data in a
simulation framework. The design had the following
requirements:

1. The design must provide several general capa-
bilities that may be incorporated into any type
of playback.
a. The design must allow a vehicle to specify

its starting point within the playback file.
b. The design should have a minimal impact

on the performance of the framework when
there are vehicles in playback mode and no
impact on performance when there are no
vehicles in playback mode.

c. The design must provide a method to delay
the start of playback for a specified amount
of time.

3
American Institute of Aeronautics and Astronautics

d. The design must provide a means to con-
tinuously loop.

e. The design must provide a mechanism for
recording data at integral divisions of the
simulation frequency.

f. The design must provide a mechanism for
playing back data recorded with a different
frequency than the simulation.

g. The design must allow multiple vehicles to
be driven from one playback file.

2. The design should provide several specific

playback capabilities.
a. The design should support an airport traffic

mode where the playback vehicles have
some intelligence when taxiing. A vehicle
should not run into other vehicles, should
not incur upon the runway when another
aircraft is taking off, should stop smoothly
when forced to halt, etc…

b. The design should support the playback of
surface deflections or surface commands.

c. The design should support the playback of
cockpit inputs.

A design that met the above requirements was imple-
mented in the Langley Standard Real-Time Simulation
in C++ (LaSRS++) application framework. LaSRS++
provides a powerful object-oriented framework for
dynamic vehicle simulation in real-time3. The frame-
work’s object-oriented design makes the software ex-
tremely flexible, easily maintainable, and provides a
high degree of re-use4. Encapsulation was used to hide
implementation details. Inheritance and aggregation of
common subcomponents were used to achieve maxi-
mal code reuse. Virtual method interfaces were utilized
to obtain the advantages of polymorphism. Docu-
mented design patterns were used where possible2. The
Builder and Singleton patterns were used in the design.
The Builder pattern separates the construction of a

Figure 1 – RAMFile and RAMFileManager

RamFileManager
Map<string,char*> open_files

stat ic RAMFileManager* instance()
stat ic void destroyInstance()
stat ic RAMFile* createRAMFile(st ring filename, int size)
stat ic void destroyRAMFile(RAMFile* ramfile)

RAMFile
char* ram_buffer
char* position

int fread(void* const address, int size, int number_of_objects)
int fwrite(void* const address, int size, int number_of_objects)
int ftell(Origin origin = BEGINNING)
int fseek(int offset, Origin origin = BEGINNING)
void rewind()
void clear()
bool eof()
string getFilename()

0..*0..*

The class allows "file"
access to the memory
buffer. This allows file
data to be read or
writ ten during hard
real-time operations .

This class manages the creation
and destruction of all RAMFiles
in the Simulation. The class
maintains a map of filenames
and memory buffers from the
heap or in shared memory. The
class creates RAMFile objects
that share the same memory
buffer if the same filename has
been requested.

4
American Institute of Aeronautics and Astronautics

complex object from its representation so that the same
construction process can create different representa-
tions. The Singleton pattern ensures only one instance
of a class exists and provides a global point of access
to it.

RAMFile

The core of the design is a class called RAMFile. This
class allocates a block of memory on the heap or in
shared memory, and provides an interface that allows a
client to treat the block of memory like a UNIX file. A
client can read or write the “file” without the perform-
ance penalty associated with actual file access. This
allows a client to write data to the RAMFile during
hard real-time operations and then copy that data from
the RAMFile to physical disk when the constraints of
hard real-time are no longer in effect. The class also
allows the file to be accessed by more than one client
at a time. Figure 1 uses the Unified Modeling Lan-
guage (UML) to show the class diagram for the RAM-

File class and its relationship to a second class named
RAMFileManager.

RAMFileManager manages the creation and
destruction of all RAMFile objects in the simulation.
The Singleton pattern ensures that only one instance of
this class is ever created. RAMFileManager fields
requests by clients to create RAMFile objects via the
createRAMFile method. The method returns a
RAMFile reference. If a client is the first client to
request that the contents of a file be used in a
RAMFile, RAMFileManager allocates a memory
buffer and loads the file’s contents into the buffer. The
RAMFileManager then passes the buffer to the
RAMFile when it is instantiated. If a client asks for a
file that has already been loaded into a buffer for use
by another client, the RAMFileManager class
instantiates a RAMFile object by passing the pre-
existing memory buffer to RAMFile’s constructor. This
allows multiple clients to work on a single file without
complicating the interface of RAMFile. Similarly, each
client calls destroyRAMFile when the client is finished

Playback
PlaybackReader reader
PlaybackWriter writer

virtual void initialize()
virtual void update()
bool isRecording()
bool isPlayback ()
void setRecording(bool recording)
void setPlayback(bool playback)
void setRecordingFilename(const char* filename)
void setPlaybackFilename(const char* filename)
bool isPlaybackAutoRepeat()
void setPlaybackAutoRepeat(bool auto_repeat)
bool isPlaybackRewinding()
int getSampleRate()
void putSampleRate(int sample_rate)

PlaybackWriter
RAMFile* ramfile

void initialize()
bool isWriting()
void setWrit ing(bool writing)
void setFilename(const char* filename)
bool hasValidFile()
void rewind()
void writeDataToFile()
void write(char* data, int num_bytes)
void incrementNumberOfDataSets()

11

PlaybackReader
RAMFile* ramfile
int key

void initialize()
bool isReading()
void setReading(bool reading)
void setFilename(const char* filename)
bool hasValidFile()
void rewind()
bool isEndOfFile()
void read(char* data, int num_bytes)
long getNumberOfDataSets()

11

RamFileManager

static RAMFileManager* instance()
static void destroyInstance()
static void createRAMFile()
static void destroyRAMFile()

RAMFile

int fread()
int fwrite()

11 11
0..*0..*

Figure 2 – Playback

5
American Institute of Aeronautics and Astronautics

using a particular file. RAMFileManager only destroys
the memory buffer for a file when there are no longer
any RAMFile objects referencing the buffer.

Playback

Playback is an abstract class intended to be the base
class for all types of playback operations. The class
was designed to provide a generic interface for the
recording and playback of data. Figure 2 demonstrates
the Playback class and its dependencies.

Playback has two virtual methods that must be defined
by all concrete derived classes. The initialize method
is expected to initialize a derived class before or after
data has been recorded or played back. Transfers
to/from physical disk should occur when this method is
called. The update method is intended to actually
transfer data between the RAMFile and the simulation
models. All of the other methods defined in Playback
are to be used by clients and derived classes to manage
the two classes contained within Playback, Playback-
Reader and PlaybackWriter.

PlaybackReader provides an interface for reading
playback data. If a valid filename has been given and
the setReading method has been called with true as its
argument, the class requests RAMFileManager to cre-
ate a RAMFile for the file and then copies the data into
the RAMFile if it is the first client of the RAMFile. If it
is not the first client of this RAMFile then the data has
already been loaded into memory from the file. Aggre-
gation of a RAMFile object rather than inheritance
allows PlaybackReader to hide the subset of RAM-
File’s interface for modifying the file, while providing
wrapper methods allowing reuse of RAMFile’s reading
capabilities. The PlaybackReader class can now be
used to read the data.

PlaybackWriter works in a similar manner except it
writes data into the RAMFile and then copies it to
physical file when initialize is called. The class as-
sumes that it is the only user of a RAMFile because it
is writing data. In a manner similar to Playback-
Reader, PlaybackWriter prevents clients from access-
ing the reading capabilities of RAMFile’s interface

Figure 3 – The Playback Hierarchy

PositionalModelPlayback
Vector<double>* position
UnitQuaternion* orientation
Vector<double>* velocity
Vector<AngularValue>* angular_vel_body
RotationMatrix& inertial_to_body
GeodeticCoordinates& geodetic_coordinates

virtual void update()
vir tual void initialize()
void readPositionalModelStates()
void writePosi tionalModelStates()

CockpitPlayback
Mode& mode
AdjVector<double*> registered_doubles
AdjVector<int*> registered_ints
AdjVector<bool*> registered_bools

update()
initialize()
addVariables()
registerVariable(double*)
registerVariable(int*)
registerVariable(bool*)

TrafficPlayback
Universe* universe
RelGeom Table* rel_geom_table
RunwayThreshold* runway

virtual void update()
virtual void initial ize()

InterpolatingPlayback

virtual void initialize()
vir tual void update()
vo id regis terVariable(double* variable_to_register)
vo id readNextPoint()
vo id writeNextPoint()

ControlSystemPlayback

virtual void update()

ControlSystemSurfacePlayback

virtual void update()
void registerControlSurface(ControlSurface* surface)

ControlSystemDevicePlayback

virtual void update()
void registerControlDevice(ControlDevice* device)

Playback

virtual void initialize()
virtual void update()

6
American Institute of Aeronautics and Astronautics

while providing access to RAMFile’s writing capabili-
ties through wrapper methods.

Interpolating Playback

InterpolatingPlayback is a concrete class that records
data at a fixed integral division of the simulation fre-
quency while allowing data to be played back every
frame by interpolating between the sampled data
points. Figure 3 illustrates that InterpolatingPlayback
inherits from Playback and that the class implements
the initialize and update virtual methods declared in
the interface of Playback. The class also uses all of the
methods defined in Playback to manage the recording
and playback of files.

The method registerVariable allows client classes to
register references to variables that are to be recorded
and played back. Each variable that is registered with

InterpolatingPlayback is added to a vector of variables.
When recording, the method writeNextPoint first
writes the current time to the RAMFile and then iter-
ates through the vector of registered variables writing
the value of each variable to the RAMFile. The update
method makes sure that the writeNextPoint method is
only called at the selected recording frequency. During
playback, when the update method is called read-
NextPoint is called to read data sets from the playback
file until it finds one which occurs after the current
simulation time. The method readNextPoint saves this
set and the previous one. A linear interpolation be-
tween these two sets determines the current set. These
calculated values are then copied into the registered
variables. If the recording frequency equals the play-
back frequency, no interpolation will be performed and

Figure 4 – Airport Traffic Diagram

8R
8L 26R

26L

9L
9R 27L

27R

Hartsfield Atlanta Airport

Departure on 26L

Arrival on 26R

Runway
Threshold
Bounding
Box

Runway
Bounding
Box

7
American Institute of Aeronautics and Astronautics

the played back data will be identical to the recorded
data.

PositionalModelPlayback

In the LaSRS++ framework, a PositionalModel is a
simulation object that has a position, orientation, trans-
lational velocity, angular velocity, and a set of geo-
detic coordinates. These are the minimum attributes
required by the framework for a simulation object to
be represented visually using a CGI and to support the
computation of relative geometry between simulation
objects. The Vehicle class extends PositionalModel by
inheriting from it and adding acceleration as a state.
Aircraft in turn, extends Vehicle by adding all of the
states of an aircraft (angle of attack, sideslip, etc…).
Since all vehicles in the LaSRS++ framework are de-
scendants of PositionalModel, the motion of any vehi-
cle may be recorded and played back by recording the
states of a PositionalModel. The Positional-
ModelPlayback class provides a means to record and
playback these states.

The constructor of PositionalModelPlayback requires
references to the state vectors of PositionalModel.
This is possible because PositionalModelPlayback is
contained within PositionalModel. Positional-
ModelPlayback inherits from InterpolatingPlayback
and uses the registerVariable method to register each
component of the states. When the update method is
called, the class uses the update method in Interpolat-
ingPlayback to record or playback the state data. If
playing back data, the method then computes several
derived quantities needed by the simulation frame-
work.

TrafficPlayback

TrafficPlayback is a class that extends Positional-
ModelPlayback by providing logic to make a playback
positional model behave like aircraft traffic around an
airport. The logic assumes that all traffic is centered
about a pair of parallel runways and that the arriving
traffic must cross the departure runway. The logic also
assumes that the behavior of a recorded aircraft is con-
sistent with that of an aircraft operating at an airport.
Figure 4 shows a typical airport layout where the Traf-
ficPlayback class can be used. On this diagram all de-

parting aircraft are leaving on runway 26L and all ar-
riving aircraft are on 26R. The arriving aircraft must
cross the departure runway to get to the terminal.

The class performs several different computations to
ensure that a playback behaves like an aircraft while
taxiing. First, it uses the relative geometry information
computed by the framework to ensure that the model is
not going to collide with another model. If a collision
is predicted, then the simulation model is brought to a
halt until the path is clear again. Next, the class man-
ages whether a model may begin to cross or enter the
departure runway. To do this the class preprocesses the
playback file when the class is first constructed and
then determines on which frames the playback model
would enter or exit the departure runway. The depar-
ture runway is broken into two zones: the runway
threshold bounding box and the runway bounding box
as illustrated on figure 4. By tracking when a model is
entering either of the two zones, the class can manage
whether or not the model can enter either area because
it also knows whether another model is active in either
part of the runway. For example, if a departing aircraft
has already moved onto the threshold and is ready for
takeoff, any arriving aircraft that is already crossing
the departure runway on its way to the terminal would
be allowed to continue. The departure aircraft is not
allowed to begin its takeoff until after the runway is
clear. But any arriving aircraft that are approaching the
departure runway are forced to stop at the hold short
line (the outer edge of each bounding box) so that the
departing aircraft can take off. Once the departing air-
craft is airborne the arriving aircraft is allowed to con-
tinue.

Finally the class gives the appearance of a continu-
ously busy airport by rewinding a file when the play-
back has reached its end and then starting over. A de-
parture playback file, for example, starts at a terminal
and taxis to the departure runway. After takeoff the
aircraft flies for several more minutes. By repeating
the file again, one aircraft can be used over and over to
give the appearance of a busy airport. The class also
allows the simulation user to specify a starting location
in the playback file by specifying a latitude, longitude
and altitude. This allows multiple models to use the
same playback file but start at different time locations

8
American Institute of Aeronautics and Astronautics

within the file. The class also allows the simulation
user to specify the amount of time the model should
pause before starting playback. This option allows the
simulation operator to subject a pilot to traffic events
such as near collisions, runway incursions, and other
unusual circumstances.

ControlSystemPlayback

In the LaSRS++ framework, a ControlSystem main-
tains a collection of ControlSurfaces. A ControlSur-
face has a position command and a deflection. In
closed loop simulation, control laws transform pilot
inputs into surface position commands. The particular
control surface then transforms the commanded posi-
tion into a deflection.

ControlSystemPlayback is derived from Interpolat-
ingPlayback and serves as a base for recording and
playback of data required for repeatability during
playback of control surface commands or deflections.
Since the behavior of an aircraft is dependent both on
the control surfaces and the engine thrust, it is neces-
sary to record and play back the throttles so that play-
back of the control system results in a model with
identical behavior to the recorded model. ControlSys-
temPlayback overrides the virtual update method of
InterpolatingPlayback to transparently record and
playback throttle positions. It is left as the responsibil-
ity of child classes to record and playback surface
commands or positions.

The relationship between ControlSystem and Control-
SystemPlayback is analogous to that between Posi-
tionalModel and PositionalModelPlayback. Control-
SystemPlayback objects are constructed by and con-
tained within ControlSystem objects. It is the respon-
sibility of the ControlSystem object to expose its inter-
nal state to the playback object. The mechanisms by
which the ControlSystem exposes its state are defined
in the two child classes of ControlSystemPlayback.
ControlSystemDevicePlayback defines a method regis-
terControlDevice that gives the playback a reference to
one of the ControlDevice objects contained within the
ControlSystem. Similarly, ControlSystemSurface-
Playback defines registerControlSurface to allow a
ControlSystem to expose a ControlSurface reference to
a playback object.

ControlSystemDevicePlayback maintains a mapping of
ControlDevices to commands. For each device regis-
tered with a ControlSystemDevicePlayback, an entry is
added to this mapping, and the command is registered
with the ancestor class InterpolatingPlayback. The
virtual method update is overridden in ControlSys-
temDevicePlayback. In playback mode, the update
method of the parent class is called to drive the throt-
tles and to obtain new values for the device commands.
In recording mode, the update method records the
throttle positions and the device commands at the re-
cording sample rate. ControlSystemSurfacePlayback
operates in a similar fashion, for the purpose of record-
ing and playback of throttles and surface positions.

CockpitPlayback

CockpitPlayback provides a means to record the pi-
lot’s inputs during a simulation. In LaSRS++, aircraft
are currently regimented into three categories: fighter,
transport, and drop model. Each aircraft type has a
specific cockpit interface that provides the aircraft with
its inputs. The CockpitPlayback class is used by these
three interfaces to record and playback a pilot’s inputs.

A particular cockpit interface registers the variables
that are to be recorded and played back just like Inter-
polatingPlayback. CockpitPlayback however does not
have a sampling rate – it records data every frame.
This is the only way to ensure that the dynamic re-
sponse of a model during playback is identical to the
original performance.

Summary

The design presented in this paper met all of the speci-
fied requirements. The functionality of TrafficPlay-
back alone demonstrates that the design is flexible
enough to provide most of the required general capa-
bilities. It allows a vehicle to specify a starting point
within a playback file. It allows the simulation operator
to start playback at any time. It repeatedly uses the
same playback data to affect the motion of a positional
model. It allows several vehicles to be driven from the
same data file. InterpolatingPlayback demonstrates
fulfillment of the remaining general requirements. It
provides a means of recording data at integral divi-
sions of the simulation frequency. It provides a means

9
American Institute of Aeronautics and Astronautics

of playing back data that was recorded at any fre-
quency. The specific playback capabilities were ful-
filled by the concrete, derived classes.

Each of the playback methods has been used in a num-
ber of experiments at NASA Langley Research Center
(LaRC). For example, the TrafficPlayback class was
used in the Low Visibility and Surface Operations
(LVLASO) study in the Research Flight Deck (RFD)
at LaRC. The project used the B757 model to study a
means of improving the safety and efficiency of airport
surface operations so that clear-weather capacities can
be maintained during instrument weather conditions.
The TrafficPlayback class was used to provide airport
traffic during the study. The TrafficPlayback proved to
be extremely efficient. When the B757 aircraft model
is used by itself in the RFD it normally consumes on
average 11 milliseconds of CPU time per frame. When
traffic was added to the simulation using sixteen in-
stances of the TrafficPlayback class, the average cpu
time consumed per frame increased to only 13 milli-
seconds. Clearly each traffic model added to the simu-
lation adds very little to the computational require-
ments of the framework. The ControlSystemPlayback
class has also been used in several projects. For exam-
ple, the Weather Accident Prevention (WxAP) project
played back surface positions from flight test data to
verify simulation model performance. The Cockpit-
Playback class is used on a daily basis by both devel-
opers and researchers to analyze the performance of
both pilots and simulation models.

Object-oriented development in C++ allows the com-
plexities associated with playback to be abstracted
away behind concise interface definitions of the gen-
eral purpose classes discussed in the present work. The
diverse uses of Playback and InterpolatingPlayaback
suggest that additional special purpose recording and
playback features can be easily added to the frame-
work. Development and maintenance efforts have been
minimized by reuse of this robust foundation.

Although the design presented in this paper was origi-
nally designed to support flight simulation at NASA
Langley Research Center, the design could be used in
any object-oriented framework to heighten reuse and
maintainability.

Bibliography

[1] Richard A. Leslie, et al. LaSRS++ An Object-
Oriented Framework for Real-Time Simulation of
Aircraft. Paper Number AIAA-98-4529, August,
1998.

[2] Gamma E., Helm R., Johnson R., Vlissides J. De-
sign Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[3] Michael Madden, et al. Constructing a Multiple-

Vehicle, Multiple-CPU Using Object-Oriented
C++. Paper Number AIAA-98-4530, August,
1998.

[4] David Geyer, et al. Managing Memory Spaces In

An Object-Oriented Real-Time Simulation, Paper
Number AIAA-98-4532, August, 1998.

	AIAA-2000-4390
	MANAGING THE PLAYBACK AND RECORDING OF SIMULATION MODELS IN AN OBJECT-ORIENTED SIMULATION
	
	
	Abstract

